TRAPPIST-1e is a potential terrestrial exoplanet orbiting an ultra-cool M Dwarf star and is a prime target for observation by the James Webb Space Telescope (JWST). A one-dimensional photochemical model of terrestrial planetary atmospheres shows the importance of the incoming stellar UV flux in modulating the concentration of chemical species such as O3 and H2O.
Additionally, three-dimensional (3D) modeling has demonstrated anisotropy in chemical abundances due to transport in tidally locked exoplanet simulations. TRAPPIST-1e (We use the Whole Atmosphere Community Climate Model version 6 (WACCM6), a 3D Earth system model, to examine how uncertainty in the UV flux phenomenon is affected by assuming an early Earth-like atmospheric composition, coupled with transport. )
We use two semi-empirical stellar spectra for TRAPPIST-1 from the literature. The UV flux ratio between them is a factor of 5000 in some wavelength bins. As a result, photochemically prepared bulk O3 columns differed by a factor of 26. The spectral features of O3 in both transmission and emission spectra differ between these simulations (e.g. 19 km differences in transmission spectral efficiency for O3 at 0.6 μm).
This leads to potential ambiguities when interpreting observations, including overlap with scenarios considering alternative O2 concentrations. Therefore, the characterization of the UV spectra of their host stars is crucial to achieve robust interpretations of terrestrial exoplanetary spectra. In the absence of such stellar measurements, the atmospheric environment can be derived from other spectral features (e.g. H2O) or compared by combining direct imaging and transmission spectra.
Gregory Cook (1, 2), Dan Marsh (1), Catherine Walsh (1), Alison Youngblood (3), ((1) School of Physics and Astronomy, University of Leeds, UK, (2) Institute of Astronomy, University of Cambridge, UK , (3) NASA Goddard Space Flight Center, Solar System Exploration Division, USA).
Comments: 20 pages, 11 figures, accepted in ApJ
Subjects: Earth and Planetary Astrophysics (astro-ph.EP); Solar and Stellar Astrophysics (astro-ph.SR)
Citation: arXiv:2309.15239 [astro-ph.EP] (or arXiv:2309.15239v1 [astro-ph.EP] for this version)
Submission history
Posted by: Gregory Cook
[v1] Tue, 26 Sep 2023 20:05:40 UTC (7,260 KB)
https://arxiv.org/abs/2309.15239
Astronomy
„Oddany rozwiązywacz problemów. Przyjazny hipsterom praktykant bekonu. Miłośnik kawy. Nieuleczalny introwertyk. Student.